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ABSTRACT

We discuss a rellablllity model which reflects the dynamlc dependency between
systeg fallure and system stress. In particular, a shot-nolse process Is used to
model "residual system stress," which In turn drives a doubly stochastic Polsson
process model for system fallures. Intultlvely, resldual stress (or susceptiblllty to
fallure) may vary In a random manner yet be essentially unobservable, while
system fallures may be readlly detectable and observable. Shot-nolse
distributlons have a richness and subtlety which suggest untapped potential for
appllcations. The doubly stochastic Polsson process provides a reasonable

framework for modeling randomly varying rates of occurrence In a broad varlety
of settings.

This paper is based in part on research supported by Army Research Office Contract DAAG29-82-
K-0151 and by Office of Naval Research Contract N0o0014-82-C-0620.
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1. INTRODUCTION

Thils note 1s motivated by the general approach to fallure modellng discussed
In Lemolne and Wenocur [4]. Under this approach, system state or wear and tear
1s modeled by an appropriately chosen random process; and the occurrence of
fatal trauma Is modeled by a Polsson process whose rate functlon Is state
dependent. The system Is sald to fall when elther wear and tear accumulates
beyond an acceptable or safe level or fatal trauma occurs. The rate at which
fatal trauma can occur depends on the state of the system. The approach has
Interesting implicatlons. It provides reveallng insights Into most of the famous
and frequently used lifetime distributlons in rellablliity theory, Including the
Makeham, Gompertz, Welbull, Raylelgh and Gumbel distributlons; In fact, these
classlc models are obtained In a unifled and stralghtforward manner. Moreover,
the approach suggests Intultlvely appeallng and computationally tractable ways
of enhancing these standard fallure models and for developing new ones.

In [4] detalled examples of the fallure modeling approach are provided uslng
deterministic models and diffuslon process models for system state; use of a shot-
nolse model for system state is discussed In falrly general terms. In the present
note we provide a more detalled discussion of the approach based on using a
shot-nolse model for system stress. And we assume that the rate of occurence of
fatal trauma Is proportlonal to '"resldual system stress”. The tlme to system
fallure is then the epoch of the first count 1n a (doubly stochastic) Polsson process
whose rate function is the shot-nolse process,

In using a shot-nolse model for system stress we assume that the system s
subjected to "shots” or Jolts according to a stochastlc polnt process. A Jolt may
consist of an Internal component malfunctioning or an external "blow”" to the
system. Jolts Induce swvress on the system when they occur. However, If the
system survives the jolt it may recover to some extent. For Instance, a sudden
and unexpected surge of power In the circuit of a control system may temporarlly
Increase the llkellhood of system fallure, but the overload Itself decays rapldly.
For another example, the mortality rate for persons who have suffered a heart
attack decllnes with the elapsed time since the trauma. In thls case, the heart
actually repalrs itself to a degree.

The remalnder of thils note Is organlzed as follows. In the next section,
Sectlon 2, we derive a class of fallure distributions using the shot-nolse model for
system stress, and discuss propertles and structure. Following this, we dlscuss in
Section 3 the shot-nolse process and a related stochastlc Integral representation;
this parallels the technical development In [4] based on stochastlc differential
equations and diffusion processes.
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(3

For background on shot-nolse processes and distributions see Rilce [5], Cox
and Isham (2], and Bondesson {1]. Doubly stochastic Polsson processes are
discussed by Grandell [3]. The gamma process Is discussed In Takacs [6].
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2. SHOT-NOISE AND FAILURE DISTRIBUTIONS

Suppose that a system Is subjected to shots or Jolts according to a Polsson
- process with deterministic rate function {m(u) , u=0}. Suppose that If a Jolt of
magnitude D occurs at epoch S then at time S+t the contribution of the jolt
to the system stress Is Dh(t), where h 1s a non-negative functlon which tends
to zero as t »® . ( The function h Is also assumed to vanish on (=% , 0) and
to be Integrable over finite Intervals.) In other words, shot-lnduced stress Is
additlve and decays with time according to the rate function h. If {Sn ’ nzl}
are the epochs of shot occurrences and {D, , n=1} are the magnitudes of the
successlve Jolts, then the "resldual system stress” at time t, say X(t) , Is gtven by

DA ORI

X(t) = 3 D.h(t-S,) )

n=1

v vy
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where we take X(0)=0 . WIth stress comes susceptlbllity to fallure, and 1t Is
ui assumed that the occurrence rate of fatal trauma Is an Increasing function of
- residual system stress. In particular, If T 1s the tlme to system fallure, we
assume that P{T=8+u|T>u,X(u) =x} = 8kx + o(8) for each time
polnt u and some parameter k , so that kx can be Interpreted as the rate of
occurrence of fatal trauma when the level of system stress Is x. Thus, the fallure
i time T 1s the epoch of the first count In a Polsson process with rate function
P {kX(u) , u=0}, and therefore

P{T >t} = E[exp[- {kX(u)du] ]- (2)

The usual cholce for the attenuation or recovery function h 1n the literature
1s the function h(u)=exp(—au) if u =0 and h(u) =01if u < 0, where als
some positive parameter, that Is, exponentlal decay. Alternate cholces for
modeling the pattern of shot occurrences lncilude a renewal process, a seml-
Markov process, or a cluster polnt process. In this note we assume a Polsson
pattern for shot occurrences. We also take the shot occurrences and Jolt
magnitudes to be Independent of one another, and the successive Jolt magnitudes
to be Independent and distributed as a random variable D which Is not
ldentically O and has a proper distribution.

We now compute the right side of equation (2) and related quantities, discuss
properties of the resulting formulas, and then look at some examples.

i

To begin, let N(t) be the number of shot occurrences up to time t,

t [

M(t) = [m(u)du (3) '

0 !
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Y(t) = [kX(u)du. (4)
0

We assume that E{N(t)} = M(t) 1s finlte for each ¢, from which it follows
that Y(t) 1s finite with probabtlity one. Put

¢t
H(t) = [h(u)du. (5)
0
If N(t) =n, then
Y(t) = j)'},knjn(t-sj) ) )
=1

and the shot epochs S;, - ,S, are Independent and distributed as a random

" varlable U with density m(u)/M(t) for 0 S u = t. Thus, If L Is the Laplace
transform of the distribution of D, then for s&0

L -:""-‘-

E{ exp[~sY(t)][N(t)=n } = (B{ expl-skDH(:-U)] }})" @

= [ { L(skH(t-U))[m(u)/M(t)]du] .

Unconditioning on the value of N(t) , we find that

Wy |

E{ exp[—sY(t)]} = exp[—M(t)]exp[“!'L(skH(u))m(t-u)du]. (8)

Putting s=1 In equation (8) glves

A

v .

P{T>t} = exp[—M(t)] exp[ { L(kI{(u))m(t —u)du]. (9)

If M(t)=-™ as t - then equation (9) defines a proper probabllity ;
distribution concentrated on (0,%). We assume henceforth that this Is the case. i
Let R(t) denote the quantity on the right side of equation (9). If the function i
m(s) driving the process of shot occurrences is almost everywhere differentlable,
then the distribution of T has density R(t)r(t) and fallure rate r(t), where

T Y Y Y s e T,

r(t) = m(t) - m(0)L(kH(t)) ~ {L(kH(u))m'(t—u)du. (10)
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Now conslder N(T), the number of Jolts leading to system fallure. We
Indicate briefly how to obtaln the generating functlon of N(T). We begin with
the jolnt distribution of T and N(T). Consider the difference

P{t—h < T =t , N(t)=n} = P{T>t—h,N(t)=n}-P{T >t,N(t)=n} (11)

Formally, If we dlvide equation (11) by h and let h tend to 0, we obtaln the jolint
density of T and N(T). This llmiting process can be rigorously Justified by
appealing to the absolute contlnulty of the distribution of T. We now proceed by
expanding the left-hand-side of (11) Into more tractable quantities. Standard
probabllistlic arguments lead to:

P{T>t—h, N(t)=n} = P{T>t,N(t)=n} = g(t—h,n)—g(t,n) (12)

—amrm

—g(t—h,n)[1—P{N(t)—N(t—h)=0}] + g(t—h,n—1)P{N(t)-N(t—h)=1} + o(h),

where g(t,n) = P{T>t , N(t)=n}. Dividing equation (12) through by h and
letting h-0 glves
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P(Tedt , N(T)=n) = [g(t,n—1)=g(t,n)]m(t)dt — g’'(t,n)dt. (13)
Now

g(t,n) = | {L(kH(u))m(t—u)du]“exp[—M(t)]/n! , (14)

and substituting (14) Into equation (13) ylelds
P(Tedt , N(T)=n) = g(t,n—1)r(t)dt. (15)

A simple Integration and summation now show that for 0 SO 1,

E[QNT)] = }Oexp[O}L(kH(u))m(t —u)dulexp[—M(t)]r(t)dt. (18)
0 0

Finally, differentiating (16) with respect to © and setting © = 1 gives

——Y YV
.'.h. ST e, 7“ ‘.

EN(T) =1+ }[}L(kH(u))m(t—u)du]R(t)r(t)dt. (17)
olo
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Other quantltles of Interest are the mean and varlance of Y(t).
Differentlating the tranform (8) with respect to s and then setting s = 0, we
see that

E{Y(t)} = E{D} j'kH(u)m(t-u)du, (18)
0
and It E{Y(t)} 1s finite,

var{Y(t)} = E{D?% f[kH(u)]zm t—u)du. (19)

The most tractable circumstance occurs when m(s) Is a step functlon or
constant, In which case equation (10) reduces to

r(t) = m(t) — m(0)L(kH(t)). (20)

Since thls case covers a multitude of possibilitles, we assume henceforth that the
rate function driving the shot process is elther a step function or constant. To
preclude tedlous nuisance, we assume that m(0) = m(0+) > 0. We now
conslder some speclfic examples.

Example 1: Suppose that the Jolt magnitudes are constant and that the jolt-
Induced stress decays slowly. In particular, suppose that D = d and that
h(u)=1/(1 + u) foru = 0. Then

r(t) = m(t) = [m(0)}(1 + t)<9], (21)
R(t) = exp[-M(t)}(1 + ¢)™(®) (22)

it kd =1, and
R(t) = exp[~M(t)lexp[m(0)}{(1 + ¢)'7*d — 1}/(1 ~ kd)] (23)

otherwise. If M(t)=mt, then (16) reduces to
R(t) = exp[—mt|(1 + t)™. (24)

Example 2: Suppose that D has a geometric distributlon; specifically,
suppose that P{D =n} =qp" for n =0,1,2,... , where 0 <p < 1
Assume that stress decays slowly as In Example 1, and that k = 1. Then
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r(t) = m(t) - m(0)al(1 + t¥(q + t) (25)

and
R(t) = exp[m(0)qt — M(t)] {(qa + ty/q} ™), (26)

Example 3: Suppose there Is a delayed reaction to a Jolt, followed by slow
decay; In particular, assume that h(v) = In(1 + av)/(1 + av) for v0, where
a Is some posltive parameter. Further, suppose that the distributlon of D has a
heavy tall; In particular, assume the distribution of D has transform
exp[—b(2s)V?] for s =0 where b Is some positive parameter. Putting
c=ba Y2 andk =1 glves

r(t) = m(t)—m(0) [1/(1 + at)], (27)
which Is very simllar to (21). If also M(t) = mt and ¢ = 1 then
R(t) = exp[—mt|(1 + at)™. (28)

Example 4: Suppose that shot-lnduced stress decays at an exponentlal rate; In
particular, assume h(v) = exp{—av] for ¥=0, where a Is some positive
parameter. Further, suppose that D has an exponential distributlon with
» parameter b. Then

1

r(t) = m(t) — m(0) {ab/(ab + k — kexp[—at))} (29)

and

R(t) = exp[{m(0)abt/(ab + k)} — M(t)].
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{(ab + k — kexp[—at]) / ab} (0)b/(sb+k) (30)
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In particular, If M(t) = mt and k = 1, then

i 4

v
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R(t) = exp[—mabt/(1 + ab)] {(1 + ab — exp[—at]}/ab}™>/( + ab) (3

In this last case, resldual system stress X(t) has a Ilmit distributlon (as t - )
which 1S gamma with location parameter b and shape parameter m/a ; cf.
Bondesson [1]. This 1s a remarkable result In that a gamma distribution with
arblitrary shape parameter arises In a physical model.
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3. A GAMMA PROCESS DRIVING SYSTEM STRESS

Let {Z(u) , U=0} be a compound Polsson process with Jump-rate function ‘
{m(u) , u=0} and Jump sizes distributed as D. Note that the serles
representation for X(t) given by (1) truncates at N(t), the number of Jolts up to
time t. Thus, X(t) admits the equlvalent representation

r
i

o
PRSI

N
a
Ia

X(t) = j'h(t ~u)Z(du) (32)
0

where the right slde of (32) i1s a Rlemann-Stleltjes Integral. This suggests
replacing the compound Polsson process Z(s) to drive system stress by some
other process which also has Independent and positive Increments. In particular h
let {Z*(u) , u=0} be a gamma process (cf. [6]) for which X

Efexp[—sZ*(u)]} = {b/(b+s)}" (33)

for all u, s & 0, where b Is some positive parameter. (The Increments of Z‘(o)
are In fact statlonary.) Now let

X'(t) = {h(t—u)z‘(du) (34)

and assume that the resldual system stress at time t Is expressed by the
Rlemann-Stlelt)es lnteg‘ral on the right side of (34). Further, suppose that the
system fallure t,lm.e T s the epoch‘ of the ﬁxst‘ count In a Polsson process with
rate function {kX (u) , u=0}. 1t R'(t) = P{T >t} then

R’(t) = E{exp[—{kx‘(u)du]} (35)

To compute the right side of (35), we first note that

}X.(u)du = }H(t-—u)Z'(du), (36)
0 0

where H(s) 1s given by (5). If J Is a positive Integer then

b J . .
Eﬁ; In(Efexp{-k 3 H(¢~(t/T))[2"G/3)-Z"(G-1)va)]}}) = (37)
“ i=1
. J
; S (+/3)In{b/[b+kH(t—(jt/J)]}.
j=1
R R R R S e it It i e e e L e




Lettlng J - % on both sldes of (37) ylelds

i‘::'é;_it R'(t) = exp] { In{b/(b+kH(u))}du]. (38)
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